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Abstract — An improved cross-entropy method with 
continuous variables for global optimization of inverse 
problems is proposed. To alleviate the low convergence rates 
of conventional algorithms, improvements in algorithm design 
mechanism and iterative process are proposed. To monitor 
and guide the searching process, the design space is divided 
into several sub-domains and three indicators are introduced 
for each sub-domain to evaluate its performances. To balance 
exploitation and exploration searches, the whole iterative 
process is designed to include both the diversification and 
intensification phases. A novel mechanism is introduced to 
enhance the diversity to allow the algorithm escaping from the 
local optima in the diversification phase. The shifting away 
from the worst sub-domain in the intensification phase 
empowers the algorithm with enhanced convergence rates. 
The proposed method is applied to a mathematic function and 
a typical electromagnetic inverse problem: TEAM Workshop 
22. Numerical results are reported to validate the effectiveness 
and efficiency of the proposed method. 

I. AN IMPROVED CROSS-ENTROPY METHOD 

A. Sub-domains Divisions 
The CE method was first proposed by Rubinstein and 

Kroses in 2004 [1]. The main idea is to mapping the 
optimization problem to a rare event estimation problem 
and tackling it using an adaptive algorithm with two 
iterative steps: (1) generate a random data sample  
according to a specified probability density function (pdf); 
(2) update the parameters of the pdf using elite solutions of 
the sample data to produce better samples [2]. The elite 
solutions occupy a very small proportion of the samples, 
typically in the order of 1%-1.5%. Most of the samples are 
abandoned without being used effectively for directing the 
subsequent searches. To increase the usage percentage of 
the samples and also to monitor the searched spaces, the 
feasible space is divided into r sub-domains. It is noted that 
the convergence speed of the algorithm is dependent on r in 
that if it is too large, more computational cost is needed to 
classify the samples; if it is too small, the algorithm will be 
easily trapped in a local optima. Empirically r is given as: 

nr m=                                         (1) 
where, n is the number of design variables, m is the number 
of sub-domains. 

For 3n ≤ , the value of m is in the range [5,10]. For 
4n ≥ , m is set to be 3~5 [3]. The three indicators defined 

to evaluate the performance of each sub-domain are: 
( )ireward t : the total rewards for the ith sub-domain up to 

the t sampling instant; ( )inum t : the number of times for the 
ith sub-domain to be selected up to the t sampling instant; 

( )iprecent t : the reward percentage for the ith sub-domain 

up to the t sampling instant, as expressed as: 
( ) ( ) / ( )i i iprecent t reward t num t=                    (2) 

To estimate the performance of the sub-domains in the 
iterative process, for a minimization problem, these 
indictors are updated according to: 
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( 1) ( ) 1i inum t num t+ = +                                (4) 
( 1) ( 1) / ( 1)i i iprecent t reward t num t+ = + +              (5) 

B. Diversification Phase and a Novel Mechanism 
The algorithm starts from a diversification phase to 

uniformly explore the whole feasible space without getting 
trapped onto a local optimum. Because of implementation 
simplicity, the normal distribution function 2( , )N μ σ , with 
its mean μ and standard deviationσ, is selected as the pdfs. 
As a result, the updating formulae for the selected pdf in 
this phase are proposed as: 

( 1) _ ( )t x best tμ + =                              (6) 
( 1) ( ( ))Nt std x tρσ + =                            (7) 

( 1) ( 1) (1 ) ( )t t tσ βσ β σ+ = + + −               (8) 

where, _ ( )x best t  is the best point at the tth sampling 
instant, ( )NX tρ  are the elite solutions, β is the smoothing 
parameter ranging between 0.6 to 0.9, ρ is the percentage of 
elite solutions in the range of 1%~1.5%, N is the sample 
size. Moreover, 

(1 ) _M rand rand new paraμ μ= − × + ×            (9) 
1 ( )
5M u lx xσ = −                               (10) 

_ _ (min( ))inew para rand sub space num= ×          (11) 
2MN N= ×                                    (12) 

where _new para  is the random point in the sub-domain 
having the minimal evaluating indictor num. 

When the number of successive iterations without 
improvements in the best objective function so far searched 
exceeds a predefined value in the diversification phase, it is 
futile to continue the exploiting search around the current 
solutions [4]. Accordingly, a novel modification 
mechanism is introduced to update μ and σ using (9)-(11), 
while the size of samples is increased in accordance to (12). 

C. Intensification Phase and Shifting away from the 
Worst Sub-domains 

An intensification phase is designed to efficiently find 
the global optimal solution. For this purpose, a dynamic 
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smoothing parameter is used to update the parameters of 
the pdfs. More specially,  

( 1) _ _ ( )t x best overall tμ + =             (13) 
( 1) ( ( ))Nt std x tρσ + =                     (14) 

( 1) ( 1) (1 ) ( )t t tσ βσ β σ+ = + + −           (15) 

0 0 (1 1 / )qtβ σ σ= − −               (16) 

0
1 ( )
5 u lx xσ = −                        (17) 

where; _ _ ( )x best overall t  is the best sample point up to 
the tth sampling instant; q is the attenuation parameter, 
generally within the range of 2~5; ux , lx  are, respectively, 
the upper and lower limits of the variables. 

To increase the convergence speed, most sampling 
points should be focused around the current best solution in 
the intensification phase. In this regard, in order to avoid 
generating samples that are far away from the current best 
solution, a mechanism to shift the solution away from the 
worst sub-domains is proposed. According to the definition 
of parameter ( )iprecent t , this goal can be realized using: 

( ) ( ) (1 ) _ _ ( )i i i ix j precent x j precent x best overall j= × + − ×   (18) 

D. Algorithm Description 
To facilitate the implementation of the proposed CE 

method, its iterative procedures are summarized as: 
Step 1: Define the number of variables and use the sub-

domain of each variable to divide the feasible space into r 
sub-domains. Initialize 0 ( ) / 2u lx xμ = + , 0 ( ) / 3u lx xσ = − , 
the sampling index t=0. the modification-index parameter 
flag=0; Also, define DN the sampling number of the 
diversification phase; IN  the sampling number of the 
intensification phase; N the number of points in one 
sampling; ρ the percentage of the elite solutions; w the 
threshold value for successive iterations without 
improvement in the current best solutions; Generate N 
sampling points X. 

Step 2: Calculate the function value of the sampling 
points and the parameters of the sub-domains which are, 
namely, ( )ireward t , ( )inum t , ( )iprecent t ; Record the 
current best point _x best and global best point 

_ _x best overall . If the global best point has no 
improvement for predefined number of successive 
iterations, a threshold w is selected; set flag=1.  

Step 3: In case that Dt N≤ , and flag=0, use (6)(7) to 
update pdf; if flag=1, use (9)(10)(12) to update the pdf and 
the number of sampling points. In case that Dt N> , use 
(13)(14) to adjust the pdf. Use (18) to shift the solution 
away from the worst sub-domain. 

Step 4: Generate new sampling points based on the new 
parameter of the pdf. 

Step 5: if ( )D INt N+< , t=t+1, go to step 2; else go to 
step 6. 

Step 6: Stop the algorithm. 

II. NUMERICAL RESULTS 
To validate and demonstrate the advantages of the 

proposed algorithm, a non-linear mathematic function and 
the TEAM workshop Problem 22  are solved [5],[6].  

The global optimum of the non-linear function is 
located at point (3, 4) with the objective value of 1.2112. 
The parameters of the proposed algorithm for solving this 
function are set as: N=20, r=25, ρ =0.01, DN =25, IN =15, 
w=3,q=2, β =0.7. Table I shows a comparison of the 
averaged performance between the original and the 
proposed CE methods with 20 random running. Table II 
tabulates the final solution and the global optimum of one 
typical run among 20 random runs in solving the TEAM 
workshop Problem 22 for the proposed algorithm. The 
algorithm parameters in this case study are set as: N=40, 
r=125, ρ =0.01, DN =25, IN =20, w=3, q=2, β =0.8. Table 
III gives a comparison of the final solution and number of 
iterations between the original and the proposed CE 
methods. Obviously, the proposed algorithm can find the 
same qualified solutions with much less iterations in the 
case study being reported in this paper. 
 

TABLE I 
PERFORMANCE COMPARISON OF THE PROPOSED AND THE ORIGINAL CE 

METHODS IN SOLVING THE MATHEMATICAL FUNCTION  

TABLE II 
THE FINAL SOLUTION OF A TYPICAL RUN OF THE PROPOSED ALGORITHM 

TABLE III 
PERFORMANCE COMPARISON OF THE PROPOSED AND THE ORIGINAL 

ALGORITHMS  ON TEAM WORKSHOP PROBLEM 22  
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No. of Averaged iterations  No. Iterations to find 
global optimum Proposed Original CE 

20/20 832 28965 

Algorithm Final Solution fopt 
No. 

Iterations
Original CE 3.0,      3.9954 1.2112 30693 
The proposed  3.0 ,     3.9955 1.2112 838 

Algorithm r2 (m) h2/2 (m) d2  (m) f_opt No. 
Iterations

Original CE 3.0835 0.2414 0.3895 0.0858 59376 

The proposed 3.0888 0.2404 0.3886 0.0860 1186 




